

(주)시티월 ENG 대표이사 신흥 대학교 건축과 겸임교수(공학박사) 한국 풍공학회 이사 **원종호** 



(㈜시티월 ENG 구조팀 대리 한양대학교 공학석사 (건축구조해석연구실) 김길오

# PVC창호 구조검토 자동화 프로그램의 개발과 활용방안

## 1. 들어가는 글

풍하중 및 자중에 대하여 PVC창호(P.V.C Punched Window)의 멀리언(Mullion)과 트랜섬 (Transom)의 보강재 구조 검토와 PVC 창호를 지지하기 위한 Anchor system(bracket + stud anchor)을 설계하기 위하여 보다 신속하고 정확한 도구를 마련할 필요성이 대두되었다.

PVC 창호는 오피스나 아파트 등 건축물에 가장 많이 쓰이는 외장재 중 하나이다. 현장에서 다양 한 크기와 형태가 쓰이기 때문에 신속하고 정확한 대처가 필요하다. 기존 구조검토 방식은 주어 진 조건에 대하여 풍하중을 산정하고 이를 MIDAS 또는 유한요소 프로그램을 이용하여 반력, 모 멘트 및 처짐을 산출하여 이를 토대로 구조검토 보고서를 작성하는 형태로 진행 되어왔다. 하지 만 현장의 신속한 대응 및 설계·시공 변경, 하중 조건의 변경으로 인하여 구조검토 보고서를 새 롭게 변경해야 하는 번거러움이 있다.

PVC창호 구조 자동화 프로그램은 풍하중 산정과 창호 및 보강재와 브라켓 입력, 검토 및 보고서 까지가 하나의 프로세스로 이루어지기 때문에 즉각적인 결과 확인이 용이할 뿐 아니라 설계 및 시공 변경 사항에도 쉽게 대응할 수 있다. 또한 거래처와 협의 과정에서 즉시 결과를 공유할 수 있으므로 사전 협의에도 유용하게 활용할 수 있을 것으로 기대된다.

본 구조 자동화 프로그램은 Java 언어로 개발되었다. Java는 함수 중심의 언어가 아닌 객체 지향 언어로써 개발 완료 이후에도 유지보수가 용이할 뿐 아니라 추가적인 모듈 확장성이 뛰어나다. 그 리고 Window 운영체제 뿐만 아니라 Linux나 Mac OS에서도 컴파일을 하면 즉시 호환이 가능한 장치 독립성의 우수한 장점을 가지고 있다.

## 2.몸글

#### 2.1 범위

본 자동화 프로그램은 다음 4가지 타입의 창호를 검토할 수 있다.



창의 크기와 각 타입 별로 모듈 사이즈 를 입력하고 나면 하중 산정 및 보강재 와 앵커 등을 정의하여 구조검토를 수행 하다.

### 2.1.2 프로그램 수행 기능

#### (1) 풍압 산정 ( KBC 2009 )

KBC 2009 건축구조 기준의 외장재 설계용 풍하중 기준에 대하여 풍압을 산정 할 수 있다.



설계 풍하중 산정 윈도우

- ① **기본풍속(Wind Velocity)**: 건축물의 지리적 위치로 검토 대상 지역을 선택하여 결정하는 방법과 풍 동 실험 등의 방법으로 풍속을 측정하여 직접 입력하는 방법이 있다.
- ② 지표면 조도(Category): 풍속의 높이 분포에 큰 영향을 주는 지표면의 거칠기이다. 주변 지역의 지표 면의 상태가 반영된다.
- ③ 중요도 계수(Iw): 건축 용도의 중요도에 따라 설계 하중을 할증하는 계수이다. 재해시에 기능을 유지 해야 할 건물, 위험물 등을 수장하는 건물, 사회적으로 영향이 큰 건물 등이 대상이 된다.
- ④ 밀폐의 구분 (Sealing): 외장재 설계용 피크내압계수를 산정하기 위하여 결정한다.
- ⑤ 유효 수압 면적
- ⑥ 건축물 또는 PVC 창호의 높이
- ⑦ 결과: 정압과 부압 그리고 각각에 대한 지붕과 벽면에 대하여 10가지 경우에 대하여 산정되고 설계하고자 하는 조건에 맞는 값을 선택하면 최종 풍압으로 반영된다.

집제한은 멀리언의 길이에 대하여 1/100 로 허용여부를 결정한다.

임의 단면에 대하여 풍하중에 대하여 멀리언 보강재의 단면 성능과 최대 연단거리를 입력하면 굽힘 모멘 트와 처짐에 대하여 구조 검토를 수행한다. 보강재의 강종은 SS400의 항복강도 235 MPa가 적용되며, 처





## (2) 멀리언 보강재 구조 검토



#### (3) 트랜섬 보강재 구조 검토



트랜섬 보강재 구조 검토 입력부

트랜섬 보강재는 풍하중과 유리 무게에 대한 자중에 대하여 검토한다. 임의 단면에 풍압 방향과 자중방향 에 대하여 각각 2차 모멘트와 최대 연단 거리, 그리고 보강재 단면의 면적을 입력하면 구조 검토를 수행하 여 굽힘 모멘트와 처짐을 산정한다.

## (4) 브라켓 & 앵커 시스템 구조 검토

브라켓과 앵커를 구조 검토를 하기 위해서 다음 입력 툴을 이용한다.



우선, 브라켓이 설치될 위치 Position을 선택을 하고 브라켓의 종류를 선택을 하고 Edge와 브라켓 개수 Nums를 입력한다.



## 브라켓 & 앵커 시스템 부재 정의 입력 윈도우

위의 입력과정을 거치고 나서 구조 검토를 수행하면 Workspace에 반력과 응력에 대해 구조검토를 수행 하고 OK/NG 여부와 응력비를 확인할 수 있다.

#### (5) 구조계산서의 출력

모든 구조검토를 수행하고 나면 이에 대한 구조계산서를 출력할 수 있다. 구조계산서에는 창 모듈의 크기 와 치수 그리고 앵커 설치도와 구조 검토 결과가 포함되어 있으며, 멀리언 / 트랜섬의 구조 검토 보고서와 브라켓 앵커 등의 결과가 포함된다. 그리고 별개로 검토 참조 자료를 개별적으로 출력하여 첨부할 수 있다.



| 브라켓 & | 앵커 | 시스템 | 작업 | 테이블 |
|-------|----|-----|----|-----|

| and a state of the local division of the loc |          |          |       |                                          |          |           |           |              |     |           |        |                  |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-------|------------------------------------------|----------|-----------|-----------|--------------|-----|-----------|--------|------------------|-----------------|
| Bracket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Position | Edge(mm) | Count | Dimension(mm)                            | WSA      | F,dead(N) | F,wind(N) | isReinforced | WPS | WPS Count | P,k(N) | Bracket Ratio(%) | Anchor Ratio(%) |
| A-T-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bottom   | 200.0    | 5     | A-T-D(70 × 100 × 100 × 4t × 80LG)        | WSA 3/8" | 773.47    | 2072.0    | ×            | ŀ   | þ         | 0.0    | 133.6            | 75.04           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Тор      | 200.0    | 2     | $L(100 \times 90 \times 3t \times 50LG)$ | WPS M8   | 0.0       | 328.8     | X            | -   | 0         | 0.0    | 115.8            | 104.91          |
| NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Тор      | 950.0    | 3     | WPS M8                                   | -        | 0.0       | 1966.22   | -            | -   | 0         | 0.0    | 85.49            | 85.49           |
| VPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Side     | 200.0    | 2     | WPS M8                                   | -        | 0.0       | 56.74     | -            | -   | 0         | 0.0    | 2.47             | 2.47            |
| A-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Side     | 700.0    | 2     | A-D(100 × 100 × 4t × 80LG)               | WSA 3/8" | 0.0       | 1506.31   | X            | -   | 0         | 0.0    | 101.48           | 51.5            |

해 브라켓 치수와 앵커 타입을 결정한다.

Edge와 Nums는 위 그림과 같이 Edge만큼 떨어진 거리에 동일한 간격으로 배치된다. Add 버튼을 이용하여 추가하면 Workspace 테이블에 추가된다. 그리고 브라켓과 앵커를 정의하기 위해 Workspace 테이블에서 하나의 아이템을 선택하고 Bracket 버튼을 이용하면 브라켓과 앵커 입력창에 의 ① 외장재 설계용 풍하중 산정 구조검토서

| - Calcu                       | late Wind Dro                                                                                 | ceuro.                           |       |                |            | 2090x219 |
|-------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------|-------|----------------|------------|----------|
| - carce                       | nate vinu Pie                                                                                 | ssure                            |       |                |            |          |
| $P_{\rm w} = 0.9$             | 2 kPa                                                                                         |                                  |       |                |            |          |
| input                         | info.                                                                                         |                                  |       |                |            |          |
| Vo                            | basic wind speed                                                                              |                                  | 25.0  | m/sec          | ********** |          |
| category                      | ground roughne                                                                                | ss                               | в     |                |            |          |
| I,w                           | importance factor                                                                             |                                  | 1.0   |                |            |          |
| K                             | Topographic                                                                                   |                                  | 1.0   |                |            |          |
| Ker                           | velocity pressure<br>coefficient                                                              | exposure                         | 1.1   |                |            |          |
| sealing                       |                                                                                               |                                  | 밀폐형   | 건축물            |            |          |
| h                             | height for calculo                                                                            | ation                            | 58.7  | m              |            |          |
| Aeff                          | effect pressure a                                                                             | rea                              | 4.58  | m <sup>2</sup> |            |          |
| $V_z$<br>$q_z$                | design velocity<br>= $V_0 \times K_{xx} \times K_{xt}$<br>design velocity p<br>elevation of z | ×I <sub>w</sub><br>pressure at a | 27.56 | m/sec          |            |          |
|                               | $= 1/2\rho V_{z}^{2}$                                                                         |                                  | 0.46  | kPa            |            |          |
| calcu                         | lation resul                                                                                  | t                                |       |                |            |          |
| Pe                            | design wind pre                                                                               | ssure                            |       | Ha I           |            | a        |
|                               | $= q_g (GC_{pe} - GC)$                                                                        |                                  |       |                |            |          |
| Typical                       |                                                                                               |                                  |       | -5             | 0          |          |
| Positivol                     | +) 0.92                                                                                       | kPa                              | E     | I              |            |          |
| 1 Obicive(                    | -0.76                                                                                         | kPa                              |       | T              | 4)         |          |
| Negative<br>Edge              | (-) -0.70                                                                                     |                                  |       |                |            |          |
| Negative<br>Edge<br>Positive( | +) 0.92                                                                                       | kPa                              |       | =              |            |          |

#### ② 요약(Summary) 구조 검토서



## ③ 멀리온 구조 검토서



## ④ 트랜섬 구조 검토서

| ▷ Transom                                                                   |                                 |                 |
|-----------------------------------------------------------------------------|---------------------------------|-----------------|
| 1) Bending stress                                                           |                                 |                 |
| (1) for Dead Load                                                           |                                 |                 |
| - actual moment                                                             | = 0.05                          | kN.m            |
| - section modulus ( $S_x$ )                                                 | = 8834.17                       | mm <sup>3</sup> |
| - actual bending stress $(\sigma_{b,d})$                                    |                                 |                 |
| $= M_{max} / S_x$                                                           | = 5.38                          | MPa             |
| - allowable bending stress $(f_{b,d})$                                      |                                 |                 |
| $= F_v / 1.5$                                                               | = 156.67                        | MPa             |
| - bending stress ratio                                                      |                                 |                 |
| $= \sigma_{b,d} / f_{b,d}$                                                  | = 0.03 < 1.0                    | ∴ O.K.          |
| (2) for Wind Load                                                           |                                 |                 |
| - actual moment                                                             | = 0.49                          | kN.m            |
| - section modulus ( $S_y$ )                                                 | = 16586.81                      | mm <sup>3</sup> |
| - actual bending stress ( $\sigma_{b,w}$ )                                  |                                 |                 |
| $= M_{max} / S_{y}$                                                         | = 29.66                         | MPa             |
| - allowable bending stress (f, w)                                           |                                 |                 |
| $= F_v / 1.5 \cdot 1.33$                                                    | = 208.37                        | MPa             |
| <ul> <li>bending stress ratio</li> </ul>                                    |                                 |                 |
| $=\sigma_{b,w}/f_{b,w}$                                                     | = 0.14 < 1.0                    | ∴ O.K.          |
| (3) Combined Stress                                                         |                                 |                 |
| - $\sigma_{b,d}$ / $f_{b,d}$ + $\sigma_{b,w}$ / $f_{b,w}$                   | = 0.18                          | ∴ О.К.          |
|                                                                             |                                 |                 |
| <ol> <li>Deflection</li> <li>for Dead Load(Bottom window is fit)</li> </ol> | red )                           |                 |
| <ul> <li>allowable deflection (δ)</li> </ul>                                | = 3.0                           | mm              |
| - actual deflection $(\delta_{allow})$                                      | - 0.04                          | mm              |
| ratar to <aama 1-905<="" mcmma="" td=""><td></td><td>. OK</td></aama>       |                                 | . OK            |
| Den to some MCMM-1-032                                                      | max allow                       | · · · •         |
| (2) for wind Load                                                           |                                 |                 |
| - allowable deflection ( $\delta_{allow}$ )                                 |                                 |                 |
| = $L$ (length of transom ) / 150                                            | = 11.93                         | mm              |
| - actual deflection (o max )                                                | - 0.76                          |                 |
| refer to <ks +="" 3117:2009=""></ks>                                        | $\delta_{max} < \delta_{allow}$ | ∴ O.K.          |

#### ⑤ 브라켓 & 앵커 시스템 구조 검토서-1



#### ⑤ 브라켓 & 앵커 시스템 구조 검토서-2

| 1) A<br>- F<br>- F | Acting<br>T <sub>t,act</sub> | force                                             |                        |        |
|--------------------|------------------------------|---------------------------------------------------|------------------------|--------|
| - F<br>- F         | I,act                        | - 0                                               |                        |        |
| - F                |                              | $= P_d$                                           | = 556.06               | N      |
|                    | v,act                        | = P <sub>w</sub>                                  | = 419.63               | Ν      |
| 2) A               | ctual :                      | stress                                            |                        |        |
| - A                | A <sub>x1</sub>              | $= F_{v,act} \cdot e_I$                           | = 26646.64             | N·mm   |
| - 1                | 1x2                          | $= F_{t,act} \cdot e_2$                           | = 1390.15              | N·mm   |
| - f                | Ь                            | $= M_{x1} / Z_x + M_{x2} / Z_x$                   | = 62.39                | MPa    |
| - f                | ,                            | $= F_{t,act} /A$                                  | = 1.49                 | MPa    |
| - f.               | v                            | = { $\sqrt{(F_{v,act}^{2} + F_{v,act}^{2})}$ } /A | = 1.87                 | MPa    |
| 3) A               | llowat                       | ole stress                                        |                        |        |
| - F                | y                            |                                                   | = 235.0                | MPa    |
| - F                | Ъ                            | $= (F_y / 1.3) \cdot 1.33$                        | = 240.42               | MPa    |
| - F                | F,                           | $= (F_y / 1.5) \cdot 1.33$                        | = 208.37               | MPa    |
| - F                | 7<br>V                       | $= (F_y / 1.5\sqrt{3}) \cdot 1.33$                | = 120.3                | MPa    |
| 4) S               | tress r                      | ratio                                             |                        |        |
| - F                | r<br>r                       | $= \{(f_b \ /F_b \ +f_t \ /F_t)^2 \ + \ (f_v \ /$ | $(F_v)^2 = 0.27 < 1.0$ | ∴ О.К. |
|                    |                              |                                                   |                        |        |

### ⑤ 브라켓 & 앵커 시스템 구조 검토서-3

| ▷ Anc                             | hor [WSA M8]                                |              |          |
|-----------------------------------|---------------------------------------------|--------------|----------|
| 1) Actin                          | g force                                     |              |          |
| - F <sub>1,act</sub>              | $= P_w$                                     | = 419.63     | Ν        |
| - F <sub>v,act</sub>              | $= P_d$                                     | = 556.06     | Ν        |
| 2) Pull-c                         | out force of anchor bolt                    |              |          |
| - N <sub>sd1</sub>                | $= F_{t,act} \cdot (e_1 + 0.85d) / (0.85d)$ | = 1278.51    | N        |
| - N <sub>sd2</sub>                | $= F_{v,act} \cdot e_2 / (0.85d)$           | = 44.81      | N        |
| - Nsd                             | $= N_{sd1} + N_{sd2}$                       | = 1323.32    | Ν        |
| - N <sub>R</sub>                  | $= N_R \cdot 1.33$                          | = 6650.0     | Ν        |
| - N <sub>sd</sub> /N <sub>F</sub> | 2                                           | = 0.2 < 1.0  | ∴ О.К.   |
| 3) Shear                          | force of anchor bolt                        |              |          |
| - V <sub>sd</sub>                 | $= F_{v,act}$                               | = 556.06     | N        |
| - V <sub>R</sub>                  |                                             | = 4600.0     | N        |
| - V <sub>sd</sub> /V <sub>F</sub> | 2                                           | = 0.12 < 1.0 | .:. О.К. |

## 3. 마치는 글

현재 개발된 PVC 구조검토 자동화 프로그램은 특정업체의 브라 켓과 앵커 그리고 PVC Frame에 구조검토를 수행할 수 있다. 하 지만 브라켓과 앵커 또는 기성 멀리언 / 트랜섬 보강재에 대한 단 면정보 등을 프로그램 내에 데이터 베이스화하여 일반적으로 활 용할 수 있는 범용 프로그램이 될 것으로 기대되며, 개정될 2014 건축구조기준 (KBC 2014)에 대한 풍압 산정식을 추후에 적용하 면 좀 더 폭넓게 활용할 수 있을 것으로 사료된다.

또한 본 자동화 프로그램을 실무에 사용할 경우, 구조를 전공하 지 않은 비전문가 일지라도 기초적인 구조 지식과 사용 매뉴얼만 숙지한다면 정확하고 신속하게 구조계산서를 작성하는 능력을 갖추게 될 것으로 확신한다.

#### 참고 문헌

1. 대한건축학회, 국토해양부 고시 건축구조기준 2009 2. Java SE(Standard Edition) 1.7 (http://www.oracle.com/ technetwork/java/index.html)